A Finite Volume Ventcell-Schwarz Algorithm for Advection-Diffusion Equations

نویسندگان

  • Laurence Halpern
  • Florence Hubert
چکیده

This paper provides a new fully discrete domain decomposition algorithm for the advection diffusion reaction equation. It relies on the optimized Ventcell–Schwarz algorithm with a finite volume discretization of the subdomain problems. The scheme includes a wide range of advection fluxes with a special treatment on the boundary. A complete analysis of the scheme is presented, and the convergence of the algorithm to a discrete approximation of the equation using a modified convective flux is proved. Numerical illustrations of the efficiency of the discrete Ventcell– Schwarz algorithm are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems

We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Ventcell transmission conditions. We analyze the semidiscretization in time with discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite ...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

DDFV Ventcell Schwarz Algorithms

Over the last five years, classical and optimized Schwarz methods have been developed for (1) discretized with Discrete Duality Finite Volume (DDFV) schemes. Like for Discontinuous Galerkin methods, it is not a priori clear how to appropriately discretize transmission conditions. Two versions have been proposed for Robin transmission conditions in [? ] and [? ]. Only the second one leads to the...

متن کامل

Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations

We introduce nonoverlapping domain decomposition algorithms of Schwarz waveform relaxation type for the semilinear reaction-diffusion equation. We define linear Robin and second order (or Ventcell) transmission conditions between the subdomains, which we prove to lead to a well defined and converging algorithm. We also propose nonlinear transmission conditions. Both types are based on best appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014